Nonlinear Crystals: KTA

Nonlinear Crystals: KTA

Description

Nonlinear Crystals: KTA

KTA (potassium titanyl arsenate) is a nonlinear crystal that is commonly used in laser technology for frequency conversion. KTA has a relatively high nonlinear coefficient, a wide transparency range, and good thermal and mechanical properties, making it suitable for a range of applications such as second harmonic generation (SHG), optical parametric oscillation (OPO), and difference frequency generation (DFG).

In SHG, the frequency of a laser beam is doubled by passing it through a KTA crystal. This process is used to generate light in the ultraviolet range, which is useful in applications such as fluorescence microscopy and laser spectroscopy.

OPO is a process that involves the generation of two coherent light beams with different frequencies. KTA can be used as the nonlinear crystal in an OPO to generate tunable mid-infrared radiation, which has applications in remote sensing, environmental monitoring, and medical diagnostics.

DFG produces a new frequency that is equal to the difference between two input frequencies. KTA can be used in DFG to generate tunable mid-infrared radiation, which has applications in spectroscopy, sensing, and imaging.

KTA has a relatively high damage threshold, which makes it suitable for high-power laser applications. It also has good thermal stability, which means its optical properties are less sensitive to temperature changes. Additionally, KTA has a relatively low absorption coefficient, which means it can be used with high power lasers without significant degradation in performance.

However, KTA is a relatively expensive material compared to other nonlinear crystals, which can limit its use in certain applications. Additionally, KTA crystals can be difficult to grow and fabricate, which can increase their cost and lead times.

Transparency range, nm 350 - 5500
Point group mm2
Space group Pna21
Density, g/cm3 3.45
Lattice parameters, Å a = 13.103, b = 6.558, c = 10.746 Å
Mohs hardness 3
Refractive indexes:
at 1064 nm nx = 1.782; ny = 1.790; nz = 1.863
at 532 nm nx = 1.7826, ny = 1.7890, nz = 1.8677
Electro-optic coefficient, pm/V r13 = 15 ± 1, r23 = 21 ± 1, r33 = 40 ± 1
Non-linear coefficients, pm/V d31 = 2.76, d32 = 4.74, d33 = 18.5
Optical damage threshold, MW/cm2 >10 000 (1064 nm, 70 ps)
Chemical properties non-hygroscopic

Order Form

Drag and drop files here or Browse
*You can upload your specification file here. Max 5MB. Allowed File Types: JPG, PNG, PDF

About Semiconductor Electronics

SEMI EL project is a global supplier of materials, equipment, spare parts and supplies for the semiconductor industry.

Learn more...

Get In Touch

 Email: info@semi-el.com

Join Our Community

Sign up to receive email for the latest information.